3 research outputs found

    The CTA aims at the Inert Doublet Model

    No full text
    We show that the Cherenkov Telescope Array (CTA) can realistically challenge the Inert Doublet Model, excluding its heavy regime up to dark matter masses of 800 GeV and probing a large fraction of the remaining viable parameter space at even higher masses. Two features of the Inert Doublet Model make it particularly suitable for CTA searches. First, the dark matter mass (in the heavy regime) must be larger than 500 GeV. Second, the dark matter annihilation cross section, σv\sigma v, is always larger than the thermal one, reaching values as high as 10−25cm3s−110^{-25} \mathrm{cm^3s^{-1}}. This higher value of σv\sigma v is the result of the unavoidable coannhilation effects that determine the relic density via thermal freeze-out in the early Universe. We find that with 100 hours of Galactic Center exposure, CTA's expected limit widely surpasses, even after the inclusion of systematic errors, current and projected bounds from Fermi-LAT and HESS on this model

    Isospin-violating dark matter in the light of recent data

    No full text
    In scenarios where dark matter interacts differently with protons and neutrons (isospin-violating dark matter), the interpretation of the experimental limits on the dark matter spin-independent cross section may be significantly modified. On the one hand, the direct detection constraints are shifted depending on the target nucleus, possibly changing the hierarchy among different experiments. On the other hand, the relative strength between the bounds from neutrino detectors and those from direct detection experiments is altered, allowing the former to be more competitive. In this paper, the status of isospin-violating dark matter is assessed in the light of recent data, and the prospects for its detection in the near future are analyzed. We find, for example, that there are regions in the parameter space where IceCube currently provides the most stringent limits on the spin-independent cross section, or others where the expected sensitivity of DEAP-3600 is well above the LUX exclusion limit. Our results highlight the complementarity among different targets in direct detection experiments, and between direct detection and neutrino searches in the quest for a dark matter signal

    Gamma-ray Limits on Neutrino Lines

    Get PDF
    MMonochromatic neutrinos from dark matter annihilations (χχ→ννˉ\chi\chi\to \nu\bar\nu) are always produced in association with a gamma-ray spectrum generated by electroweak bremsstrahlung. Consequently, these neutrino lines can be searched for not only with neutrino detectors but also indirectly with gamma-ray telescopes. Here, we derive limits on the dark matter annihilation cross section into neutrinos based on recent Fermi-LAT and HESS data. We find that, for dark matter masses above 200 GeV, gamma-ray data actually set the most stringent constraints on neutrino lines from dark matter annihilation and, therefore, an upper bound on the dark matter total annihilation cross section. In addition, we point out that gamma-ray telescopes, unlike neutrino detectors, have the potential to distinguish the flavor of the final state neutrino. Our results indicate that we have already entered into a new era where gamma-ray telescopes are more sensitive than neutrino detectors to neutrino lines from dark matter annihilation
    corecore